Elasto-plastic vibrational analysis of tapered bars under uniform axial loading considering shear deformation and rotary inertia
The analysis of structures in the plastic regime is important in order to develop an adequate and competitive design in engineering. This paper presents a study of the small-amplitude free vibration of tapered bars under pre-stress in the post-elastic regime due to a uniform axial loading. The plast...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2017-10, Vol.95, p.103-116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis of structures in the plastic regime is important in order to develop an adequate and competitive design in engineering. This paper presents a study of the small-amplitude free vibration of tapered bars under pre-stress in the post-elastic regime due to a uniform axial loading. The plastic behavior is taken into account using an energy approach. The method does not require an iterative procedure, unlike conventional methods used in plasticity. The Timoshenko beam theory and the dynamic version of the principle of virtual work are used to derive the eigenvalue problem. The solution is carried out using beam finite elements. The results are validated using 3D finite element software and results from the open literature. A variety of numerical results are given in order to analyze the influence of plastic behavior for various bar geometries and material parameters. The combined effect of the stiffening due to the axial loading and the plastic softening may produce an increase or decrease of the natural frequencies as the tensile load increases. The plastic softening effect is seen to be pronounced for short bars and for high taper ratios. In addition, axial normal modes are more affected than bending modes. |
---|---|
ISSN: | 0020-7462 1878-5638 |
DOI: | 10.1016/j.ijnonlinmec.2017.06.001 |