Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles

This paper reports architecturally designed nanocomposites synthesized by hybridizing the two-dimensional (2D) nanostructure of molybdenum disulfide (MoS2) nanosheet (NS)-supported Pt nanoparticles (PtNPs) as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). MoS2 NSs were prepared usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2017-10, Vol.7 (10), p.167
Hauptverfasser: Cheng, Chao-Kuang, Lin, Jeng-Yu, Huang, Kai-Chen, Yeh, Tsung-Kuang, Hsieh, Chien-Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports architecturally designed nanocomposites synthesized by hybridizing the two-dimensional (2D) nanostructure of molybdenum disulfide (MoS2) nanosheet (NS)-supported Pt nanoparticles (PtNPs) as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). MoS2 NSs were prepared using the hydrothermal method; PtNPs were subsequently reduced on the MoS2 NSs via the water–ethylene method to form PtNPs/MoS2 NSs hybrids. The nanostructures and chemical states of the PtNPs/MoS2 NSs hybrids were characterized by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Detailed electrochemical characterizations by electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurement demonstrated that the PtNPs/MoS2 NSs exhibited excellent electrocatalytic activities, afforded a higher charge transfer rate, a decreased charge transfer resistance, and an improved exchange current density. The PtNPs/MoS2 NSs hybrids not only provided the exposed layers of 2D MoS2 NSs with a great deal of catalytically active sites, but also offered PtNPs anchored on the MoS2 NSs enhanced I3− reduction. Accordingly, the DSSCs that incorporated PtNPs/MoS2 NSs CE exhibited an outstanding photovoltaic conversion efficiency (PCE) of 7.52%, which was 8.7% higher than that of a device with conventional thermally-deposited platinum CE (PCE = 6.92%).
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings7100167