Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity
The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2018-02, Vol.29 (4), p.3239-3249 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3249 |
---|---|
container_issue | 4 |
container_start_page | 3239 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Zalaoglu, Yusuf Terzioglu, Cabir Turgay, Tahsin Yildirim, Gurcan |
description | The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 °C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 °C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Δ
ρ, ρ
115K
,
ρ
res
and
ρ
norm
obtains the maximum superconducting characteristics of
T
c
o
n
s
e
t
,
T
c
o
f
f
s
e
t
and
RRR
. Accordingly, the annealing temperature of 700 °C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = D
o
exp(E/k
B
T)] determined at annealing temperature ranging from 650 to 850 °C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 × 10
− 7
exp[− 1.132 eV/k
B
T] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 × 10
− 7
cm
2
s
− 1
when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work. |
doi_str_mv | 10.1007/s10854-017-8259-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965519331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965519331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e41c443cb4fdfa7bd8ae09bdc5375928f037d1966ba3a4876a89ddb23cb7b8673</originalsourceid><addsrcrecordid>eNp1kcuOFSEURYnRxGvrBzgjcYzyLKihts-koxNNnBEKDh06t6gSqJvUn_i5clMOnDg6nJO9FoON0EtGXzNK9ZvKqFGSUKaJ4WokwyN0YkoLIg3_-Rid6Kg0kYrzp-hZrQ-U0kEKc0K_30Nz6QwB161cYMdLxnPKad5m7HxLF9dSP0GGcr_juBS89ncrx3mJ-GvC2eVldaUlf4aKU24LfpcI51xgX_ba3BnXVjbftgLY5YAbzCt0Rd9JgC4MkNvVFFKMW02X1Pbn6El05wov_s4b9OPjh--3n8ndt09fbt_eES_Y0AhI5qUUfpIxRKenYBzQcQpeCa1GbiIVOrBxGCYnnDR6cGYMYeKd0JMZtLhBrw7vWpZfG9RmH5at5P6l7ZhSbBSC9RQ7Ur4stRaIdi1pdmW3jNprAfYowPYC7LUAO3SGH0zt2XwP5R_zf6E_9bWMmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965519331</pqid></control><display><type>article</type><title>Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity</title><source>SpringerNature Journals</source><creator>Zalaoglu, Yusuf ; Terzioglu, Cabir ; Turgay, Tahsin ; Yildirim, Gurcan</creator><creatorcontrib>Zalaoglu, Yusuf ; Terzioglu, Cabir ; Turgay, Tahsin ; Yildirim, Gurcan</creatorcontrib><description>The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 °C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 °C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Δ
ρ, ρ
115K
,
ρ
res
and
ρ
norm
obtains the maximum superconducting characteristics of
T
c
o
n
s
e
t
,
T
c
o
f
f
s
e
t
and
RRR
. Accordingly, the annealing temperature of 700 °C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = D
o
exp(E/k
B
T)] determined at annealing temperature ranging from 650 to 850 °C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 × 10
− 7
exp[− 1.132 eV/k
B
T] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 × 10
− 7
cm
2
s
− 1
when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-8259-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Annealing ; Bismuth strontium calcium copper oxide ; Ceramic bonding ; Ceramics industry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal lattices ; Crystal structure ; Diffusion annealing ; Diffusion coefficient ; Diffusion layers ; Diffusion rate ; Electrical measurement ; Electron states ; Energy levels ; Fermi surfaces ; Heavy metals ; Materials Science ; Mathematical analysis ; Nickel ; Optical and Electronic Materials ; Penetration ; Superconductivity ; Temperature ; Wave functions</subject><ispartof>Journal of materials science. Materials in electronics, 2018-02, Vol.29 (4), p.3239-3249</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e41c443cb4fdfa7bd8ae09bdc5375928f037d1966ba3a4876a89ddb23cb7b8673</citedby><cites>FETCH-LOGICAL-c316t-e41c443cb4fdfa7bd8ae09bdc5375928f037d1966ba3a4876a89ddb23cb7b8673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-8259-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-8259-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Zalaoglu, Yusuf</creatorcontrib><creatorcontrib>Terzioglu, Cabir</creatorcontrib><creatorcontrib>Turgay, Tahsin</creatorcontrib><creatorcontrib>Yildirim, Gurcan</creatorcontrib><title>Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 °C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 °C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Δ
ρ, ρ
115K
,
ρ
res
and
ρ
norm
obtains the maximum superconducting characteristics of
T
c
o
n
s
e
t
,
T
c
o
f
f
s
e
t
and
RRR
. Accordingly, the annealing temperature of 700 °C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = D
o
exp(E/k
B
T)] determined at annealing temperature ranging from 650 to 850 °C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 × 10
− 7
exp[− 1.132 eV/k
B
T] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 × 10
− 7
cm
2
s
− 1
when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work.</description><subject>Activation energy</subject><subject>Annealing</subject><subject>Bismuth strontium calcium copper oxide</subject><subject>Ceramic bonding</subject><subject>Ceramics industry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Diffusion annealing</subject><subject>Diffusion coefficient</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Electrical measurement</subject><subject>Electron states</subject><subject>Energy levels</subject><subject>Fermi surfaces</subject><subject>Heavy metals</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Penetration</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Wave functions</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kcuOFSEURYnRxGvrBzgjcYzyLKihts-koxNNnBEKDh06t6gSqJvUn_i5clMOnDg6nJO9FoON0EtGXzNK9ZvKqFGSUKaJ4WokwyN0YkoLIg3_-Rid6Kg0kYrzp-hZrQ-U0kEKc0K_30Nz6QwB161cYMdLxnPKad5m7HxLF9dSP0GGcr_juBS89ncrx3mJ-GvC2eVldaUlf4aKU24LfpcI51xgX_ba3BnXVjbftgLY5YAbzCt0Rd9JgC4MkNvVFFKMW02X1Pbn6El05wov_s4b9OPjh--3n8ndt09fbt_eES_Y0AhI5qUUfpIxRKenYBzQcQpeCa1GbiIVOrBxGCYnnDR6cGYMYeKd0JMZtLhBrw7vWpZfG9RmH5at5P6l7ZhSbBSC9RQ7Ur4stRaIdi1pdmW3jNprAfYowPYC7LUAO3SGH0zt2XwP5R_zf6E_9bWMmw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zalaoglu, Yusuf</creator><creator>Terzioglu, Cabir</creator><creator>Turgay, Tahsin</creator><creator>Yildirim, Gurcan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180201</creationdate><title>Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity</title><author>Zalaoglu, Yusuf ; Terzioglu, Cabir ; Turgay, Tahsin ; Yildirim, Gurcan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e41c443cb4fdfa7bd8ae09bdc5375928f037d1966ba3a4876a89ddb23cb7b8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Annealing</topic><topic>Bismuth strontium calcium copper oxide</topic><topic>Ceramic bonding</topic><topic>Ceramics industry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Diffusion annealing</topic><topic>Diffusion coefficient</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Electrical measurement</topic><topic>Electron states</topic><topic>Energy levels</topic><topic>Fermi surfaces</topic><topic>Heavy metals</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Penetration</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zalaoglu, Yusuf</creatorcontrib><creatorcontrib>Terzioglu, Cabir</creatorcontrib><creatorcontrib>Turgay, Tahsin</creatorcontrib><creatorcontrib>Yildirim, Gurcan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zalaoglu, Yusuf</au><au>Terzioglu, Cabir</au><au>Turgay, Tahsin</au><au>Yildirim, Gurcan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>3239</spage><epage>3249</epage><pages>3239-3249</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 °C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 °C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Δ
ρ, ρ
115K
,
ρ
res
and
ρ
norm
obtains the maximum superconducting characteristics of
T
c
o
n
s
e
t
,
T
c
o
f
f
s
e
t
and
RRR
. Accordingly, the annealing temperature of 700 °C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = D
o
exp(E/k
B
T)] determined at annealing temperature ranging from 650 to 850 °C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 × 10
− 7
exp[− 1.132 eV/k
B
T] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 × 10
− 7
cm
2
s
− 1
when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-8259-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-02, Vol.29 (4), p.3239-3249 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1965519331 |
source | SpringerNature Journals |
subjects | Activation energy Annealing Bismuth strontium calcium copper oxide Ceramic bonding Ceramics industry Characterization and Evaluation of Materials Chemistry and Materials Science Crystal lattices Crystal structure Diffusion annealing Diffusion coefficient Diffusion layers Diffusion rate Electrical measurement Electron states Energy levels Fermi surfaces Heavy metals Materials Science Mathematical analysis Nickel Optical and Electronic Materials Penetration Superconductivity Temperature Wave functions |
title | Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20survey%20on%20minimum%20activation%20energy%20for%20penetration%20of%20Ni%20nanoparticles%20into%20Bi-2223%20crystal%20structure%20and%20temperature-dependent%20Ni%20diffusivity&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zalaoglu,%20Yusuf&rft.date=2018-02-01&rft.volume=29&rft.issue=4&rft.spage=3239&rft.epage=3249&rft.pages=3239-3249&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-8259-6&rft_dat=%3Cproquest_cross%3E1965519331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965519331&rft_id=info:pmid/&rfr_iscdi=true |