The spectral sequence of the canonical foliation of a Vaisman manifold
In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohom...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2018-04, Vol.53 (3), p.311-329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | Annals of global analysis and geometry |
container_volume | 53 |
creator | Ornea, Liviu Slesar, Vladimir |
description | In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples. |
doi_str_mv | 10.1007/s10455-017-9579-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965519284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965519284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstlNjlKsCgUvVbyFbDbRLW1Sk-3Bf2_KevDiYRiY997M8BFyjXCLAO1dRqiFoIAtVaJVVJ6QGYqWUQUNnJIZMM5oC_X7ObnIeQMAgiPOyHL96aq8d3ZMZltl93Vwwboq-mosgjUhhsEWxcftYMYhhqNkqjcz5J0JVamhSP0lOfNmm93Vb5-T1-XDevFEVy-Pz4v7FbWskSPt0KgabAMoVY2-9oDcuN47ziU47q2TjFupykyylnUInZWW91YCF6pnfE5upr37FMuredSbeEihnNSoGiFQMVkXF04um2LOyXm9T8POpG-NoI-49IRLF1z6iEvLkmFTJhdv-HDpz-Z_Qz-YyGyq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965519284</pqid></control><display><type>article</type><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><source>Springer Online Journals</source><creator>Ornea, Liviu ; Slesar, Vladimir</creator><creatorcontrib>Ornea, Liviu ; Slesar, Vladimir</creatorcontrib><description>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-017-9579-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Obstructions</subject><ispartof>Annals of global analysis and geometry, 2018-04, Vol.53 (3), p.311-329</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Annals of Global Analysis and Geometry is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</cites><orcidid>0000-0001-9267-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-017-9579-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-017-9579-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ornea, Liviu</creatorcontrib><creatorcontrib>Slesar, Vladimir</creatorcontrib><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Obstructions</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstlNjlKsCgUvVbyFbDbRLW1Sk-3Bf2_KevDiYRiY997M8BFyjXCLAO1dRqiFoIAtVaJVVJ6QGYqWUQUNnJIZMM5oC_X7ObnIeQMAgiPOyHL96aq8d3ZMZltl93Vwwboq-mosgjUhhsEWxcftYMYhhqNkqjcz5J0JVamhSP0lOfNmm93Vb5-T1-XDevFEVy-Pz4v7FbWskSPt0KgabAMoVY2-9oDcuN47ziU47q2TjFupykyylnUInZWW91YCF6pnfE5upr37FMuredSbeEihnNSoGiFQMVkXF04um2LOyXm9T8POpG-NoI-49IRLF1z6iEvLkmFTJhdv-HDpz-Z_Qz-YyGyq</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ornea, Liviu</creator><creator>Slesar, Vladimir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9267-3154</orcidid></search><sort><creationdate>20180401</creationdate><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><author>Ornea, Liviu ; Slesar, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Obstructions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ornea, Liviu</creatorcontrib><creatorcontrib>Slesar, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ornea, Liviu</au><au>Slesar, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral sequence of the canonical foliation of a Vaisman manifold</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>311</spage><epage>329</epage><pages>311-329</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-017-9579-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9267-3154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2018-04, Vol.53 (3), p.311-329 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_journals_1965519284 |
source | Springer Online Journals |
subjects | Analysis Differential Geometry Geometry Global Analysis and Analysis on Manifolds Manifolds (mathematics) Mathematical Physics Mathematics Mathematics and Statistics Obstructions |
title | The spectral sequence of the canonical foliation of a Vaisman manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20sequence%20of%20the%20canonical%20foliation%20of%20a%20Vaisman%20manifold&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Ornea,%20Liviu&rft.date=2018-04-01&rft.volume=53&rft.issue=3&rft.spage=311&rft.epage=329&rft.pages=311-329&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-017-9579-8&rft_dat=%3Cproquest_cross%3E1965519284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965519284&rft_id=info:pmid/&rfr_iscdi=true |