The spectral sequence of the canonical foliation of a Vaisman manifold

In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2018-04, Vol.53 (3), p.311-329
Hauptverfasser: Ornea, Liviu, Slesar, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 3
container_start_page 311
container_title Annals of global analysis and geometry
container_volume 53
creator Ornea, Liviu
Slesar, Vladimir
description In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.
doi_str_mv 10.1007/s10455-017-9579-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965519284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965519284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstlNjlKsCgUvVbyFbDbRLW1Sk-3Bf2_KevDiYRiY997M8BFyjXCLAO1dRqiFoIAtVaJVVJ6QGYqWUQUNnJIZMM5oC_X7ObnIeQMAgiPOyHL96aq8d3ZMZltl93Vwwboq-mosgjUhhsEWxcftYMYhhqNkqjcz5J0JVamhSP0lOfNmm93Vb5-T1-XDevFEVy-Pz4v7FbWskSPt0KgabAMoVY2-9oDcuN47ziU47q2TjFupykyylnUInZWW91YCF6pnfE5upr37FMuredSbeEihnNSoGiFQMVkXF04um2LOyXm9T8POpG-NoI-49IRLF1z6iEvLkmFTJhdv-HDpz-Z_Qz-YyGyq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965519284</pqid></control><display><type>article</type><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><source>Springer Online Journals</source><creator>Ornea, Liviu ; Slesar, Vladimir</creator><creatorcontrib>Ornea, Liviu ; Slesar, Vladimir</creatorcontrib><description>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-017-9579-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Obstructions</subject><ispartof>Annals of global analysis and geometry, 2018-04, Vol.53 (3), p.311-329</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Annals of Global Analysis and Geometry is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</cites><orcidid>0000-0001-9267-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-017-9579-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-017-9579-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ornea, Liviu</creatorcontrib><creatorcontrib>Slesar, Vladimir</creatorcontrib><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Obstructions</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstlNjlKsCgUvVbyFbDbRLW1Sk-3Bf2_KevDiYRiY997M8BFyjXCLAO1dRqiFoIAtVaJVVJ6QGYqWUQUNnJIZMM5oC_X7ObnIeQMAgiPOyHL96aq8d3ZMZltl93Vwwboq-mosgjUhhsEWxcftYMYhhqNkqjcz5J0JVamhSP0lOfNmm93Vb5-T1-XDevFEVy-Pz4v7FbWskSPt0KgabAMoVY2-9oDcuN47ziU47q2TjFupykyylnUInZWW91YCF6pnfE5upr37FMuredSbeEihnNSoGiFQMVkXF04um2LOyXm9T8POpG-NoI-49IRLF1z6iEvLkmFTJhdv-HDpz-Z_Qz-YyGyq</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ornea, Liviu</creator><creator>Slesar, Vladimir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9267-3154</orcidid></search><sort><creationdate>20180401</creationdate><title>The spectral sequence of the canonical foliation of a Vaisman manifold</title><author>Ornea, Liviu ; Slesar, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b1a940c6018941f4f013aedfe3380e3fce823c89aed8272b10bc8c3dc80359d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Obstructions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ornea, Liviu</creatorcontrib><creatorcontrib>Slesar, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ornea, Liviu</au><au>Slesar, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral sequence of the canonical foliation of a Vaisman manifold</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>311</spage><epage>329</epage><pages>311-329</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-017-9579-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9267-3154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2018-04, Vol.53 (3), p.311-329
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_1965519284
source Springer Online Journals
subjects Analysis
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Manifolds (mathematics)
Mathematical Physics
Mathematics
Mathematics and Statistics
Obstructions
title The spectral sequence of the canonical foliation of a Vaisman manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20sequence%20of%20the%20canonical%20foliation%20of%20a%20Vaisman%20manifold&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Ornea,%20Liviu&rft.date=2018-04-01&rft.volume=53&rft.issue=3&rft.spage=311&rft.epage=329&rft.pages=311-329&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-017-9579-8&rft_dat=%3Cproquest_cross%3E1965519284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965519284&rft_id=info:pmid/&rfr_iscdi=true