The spectral sequence of the canonical foliation of a Vaisman manifold

In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2018-04, Vol.53 (3), p.311-329
Hauptverfasser: Ornea, Liviu, Slesar, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-017-9579-8