The spectral sequence of the canonical foliation of a Vaisman manifold
In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohom...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2018-04, Vol.53 (3), p.311-329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we investigate the spectral sequence associated with a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of this cohomological object. This way we obtain cohomological obstructions for two-dimensional foliations to be induced from a Vaisman structure. We show that if the foliation is quasi-regular the lower bound is realized. In the final part of the paper we discuss two examples. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-017-9579-8 |