Biodegradable Inorganic–Organic POSS–PEG Hybrid Hydrogels as Scaffolds for Tissue Engineering
Biodegradable hydrogels have attracted much attention in tissue engineering due to their good biocompatibility and elastomeric behavior. In this work, a series of inorganic–organic polyhedral oligomeric silsequioxanes–poly(ethylene glycol) (POSS–PEG) hybrid hydrogels are prepared by covalently graft...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2017-11, Vol.302 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biodegradable hydrogels have attracted much attention in tissue engineering due to their good biocompatibility and elastomeric behavior. In this work, a series of inorganic–organic polyhedral oligomeric silsequioxanes–poly(ethylene glycol) (POSS–PEG) hybrid hydrogels are prepared by covalently grafting POSS into PEG and further cross‐linked by matrix metalloproteinase (MMP) degradable peptide via Michael‐type addition polymerization. All the POSS–PEG hybrid hydrogels have a porous structure and high hydrophilic ability, and the grafted hydrophobic POSS macromers result in a higher mechanical properties and lower equilibrium swelling ratio. Additionally, the hydrogels can be biodegraded by MMP‐2 solution and the POSS loading level can influence the degradation rate. It is worth mentioning that POSS‐containing hybrid hydrogels can be prepared in water and be used for 3D cell culture. In vitro cell viability study on human umbilical vein endothelial cells for 3D cell culture indicates POSS–PEG hydrogels have good compatibility. All of these results suggest that these POSS–PEG hybrid hydrogels exhibit the potential for tissue engineering scaffolds.
A series of inorganic–organic polyhedral oligomeric silsequioxanes–poly(ethylene glycol) (POSS–PEG) hybrid hydrogels are prepared in water by covalently grafting POSS into PEG and further cross‐linked by matrix metalloproteinase degradable peptide via Michael‐type addition. All POSS–PEG hybrid hydrogels have a porous structure, high mechanical properties and hydrophilic ability, good biodegradability and biocompatibility. |
---|---|
ISSN: | 1438-7492 1439-2054 |
DOI: | 10.1002/mame.201700142 |