Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates
With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failu...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2017-10, Vol.139, p.141-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates.
The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both infant and wear-out failures, and thus would benefit from a reliability growth program that addresses both these types of problems.
•Post-2005, electric propulsion reliability has outperformed that of chemical propulsion.•Hall thrusters have robustly outperformed chemical propulsion.•Hall thruster exhibit minor anomalies very early on orbit, indicative of infant anomalies.•They would benefit from better ground testing and acceptance procedures.•Gridded ion thrusters exhibit both infant and wear-out fa |
---|---|
ISSN: | 0094-5765 1879-2030 |
DOI: | 10.1016/j.actaastro.2017.06.034 |