Truncated T-splines: Fundamentals and methods

In this paper, we present Truncated T-splines as a new type of T-splines suitable for both geometric design and analysis, supporting highly localized refinement. Truncated T-spline basis functions are piece-wise polynomials that are linearly independent and form a partition of unity. Refinement of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2017-04, Vol.316, p.349-372
Hauptverfasser: Wei, Xiaodong, Zhang, Yongjie, Liu, Lei, Hughes, Thomas J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present Truncated T-splines as a new type of T-splines suitable for both geometric design and analysis, supporting highly localized refinement. Truncated T-spline basis functions are piece-wise polynomials that are linearly independent and form a partition of unity. Refinement of truncated T-splines produces nested spline spaces. Furthermore, we study truncated T-splines and local refinement on the general domain (2-manifold) with extraordinary points in the T-mesh. G1 continuity is attained around extraordinary points by properly capping quartic Bézier patches, where a constrained optimization problem is solved. In the end, we study benchmark problems using truncated T-splines in the context of isogeometric analysis. We also apply truncated T-splines to complex geometries to show the smooth surfaces and simulation results under local refinement.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2016.07.020