A deep geoelectric model of the Bol’she-Bannyi hydrothermal system, Kamchatka
This paper reports the results of magnetotelluric sounding (MTS) in the area where the Bol’she-Bannyi hydrothermal springs are discharged. The MTS curves were inverted on the assumption of a twodimensional inhomogeneous model using longitudinal and transverse curves of apparent resistivity. It was f...
Gespeichert in:
Veröffentlicht in: | Journal of volcanology and seismology 2017-09, Vol.11 (5), p.367-376 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports the results of magnetotelluric sounding (MTS) in the area where the Bol’she-Bannyi hydrothermal springs are discharged. The MTS curves were inverted on the assumption of a twodimensional inhomogeneous model using longitudinal and transverse curves of apparent resistivity. It was found that the geoelectric section contains a nearly vertical anomaly of high electrical conductivity at depths of 5.5–8 km, which is the signature of a deep-seated fault. The resulting geoelectric section for the upper crust and data from regional magnetotelluric soundings were used as a basis for developing a conceptual deep model of the Bol’she-Bannyi hydrothermal system. We quote an approximate estimate of rock porosity. According to the model, deep fluids come from a crustal layer into the subvertical deep-seated fault then penetrate via fissures into the sedimentary–volcanogenic cover, and finally arrive at the ground surface in zones of high rock permeability. We provide a recommendation for drilling a deep well in order to determine the potential of the Bol’she-Bannyi hydrothermal field. |
---|---|
ISSN: | 0742-0463 1819-7108 |
DOI: | 10.1134/S0742046317050062 |