Rust morphology characterization of polyurethane and acrylic-based marine antifouling paints after salt spray test on scribed specimens

A newly developed, polyurethane-based, marine antifouling coating, containing 2% immobilized Econea, was examined in terms of its anticorrosion performance. The novelty of the experimental formulation arises from the immobilization of the biocide which minimizes leaching and was accomplished via a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCT research 2017, Vol.14 (6), p.1381-1395
Hauptverfasser: Kiosidou, Evangelia D., Karantonis, Antonis, Pantelis, Dimitrios I., Silva, Elisabete Ribeiro, Bordado, João Carlos Moura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A newly developed, polyurethane-based, marine antifouling coating, containing 2% immobilized Econea, was examined in terms of its anticorrosion performance. The novelty of the experimental formulation arises from the immobilization of the biocide which minimizes leaching and was accomplished via a newly developed functionalization method, based on reaction of the biocide with highly reactive isocyanate functionality. The painting system was applied on steel specimens, then scribed with a sharp cutter and examined for 12 weeks in cyclic salt spray exposure. Identification of the rust morphologies was performed with XRD, Raman spectroscopy, SEM, and EDS methods. The absence of paint deformation during the experiment led to the formation of compact corrosion products, firmly adherent to the substrate, allowing transformation to more protective forms, such as oxides (hematite, maghemite, magnetite) and the least harmful of the oxyhydroxides (goethite, feroxyhyte), found in the mixture, ensuring sufficient corrosion protection. The unscratched part of the paint served as a barrier to corrosion product expansion beyond the scribed areas. An acrylic-based antifouling system was also examined for reasons of comparison. The experimental formulation exhibited superior anticorrosion performance overall, since the acrylic system presented extended material loss, blistering, checking, and extensive substrate rust coverage beneath the multilayer coat, implying unsatisfactory corrosion protection.
ISSN:1547-0091
1935-3804
2168-8028
DOI:10.1007/s11998-017-9939-0