Complementary Inequalities to Improved AM-GM Inequality
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map....
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2017-12, Vol.33 (12), p.1609-1616 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-017-7118-y |