Strong 3-Commutativity Preserving Maps on Standard Operator Algebras
Let X be a Banach space of dimension ≥ 2 over the real or complex field F and A a standard operator algebra in B(X). A map Ф : A→A is said to be strong 3-commutativity preserving if [Ф(A), Ф(B)]a = [A, B]3 for all A, B C .4, where [A, B]3 is the 3-commutator of A, B defined by [A, B]3 = [[[A, B], B]...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2017-12, Vol.33 (12), p.1659-1670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a Banach space of dimension ≥ 2 over the real or complex field F and A a standard operator algebra in B(X). A map Ф : A→A is said to be strong 3-commutativity preserving if [Ф(A), Ф(B)]a = [A, B]3 for all A, B C .4, where [A, B]3 is the 3-commutator of A, B defined by [A, B]3 = [[[A, B], B], B] with [A, B] = AB - BA. The main result in this paper is shown that, if Ф is a surjective map on A, then Ф is strong 3-commutativity preserving if and only if there exist a functional h : A→F and a scalar λ∈F with λ^4 = 1 such that Ф(A) = λA + h(A)I for all A ∈A. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-017-6145-z |