Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap

Primal or dual strong-duality (or min-sup, inf-max duality) in nonconvex optimization is revisited in view of recent literature on the subject, establishing, in particular, new characterizations for the second case. This gives rise to a new class of quasiconvex problems having zero duality gap or cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-12, Vol.69 (4), p.823-845
Hauptverfasser: Flores-Bazán, Fabián, Echegaray, William, Flores-Bazán, Fernando, Ocaña, Eladio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Primal or dual strong-duality (or min-sup, inf-max duality) in nonconvex optimization is revisited in view of recent literature on the subject, establishing, in particular, new characterizations for the second case. This gives rise to a new class of quasiconvex problems having zero duality gap or closedness of images of vector mappings associated to those problems. Such conditions are described for the classes of linear fractional functions and that of quadratic ones. In addition, some applications to nonconvex quadratic optimization problems under a single inequality or equality constraint, are presented, providing new results for the fulfillment of zero duality gap or dual strong-duality.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-017-0542-9