Use of Hydrodynamic Cavitation for Algae Removal: Effect on the Inactivation of Microalgae Belonging to Genus Scenedesmus

Excessive algae growth has generated conflicts on the use of water supplies; therefore, the focus on new technologies to remove algae from water bodies is demanding. The aim of the present study was to assess the effect of hydrodynamic cavitation on the inactivation of microalgae belonging to genus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2017-11, Vol.228 (11), p.1-8, Article 443
Hauptverfasser: Batista, Marylia Duarte, Anhê, Ana Carolina Borella Marfil, de Souza Inácio Gonçalves, Julio Cesar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive algae growth has generated conflicts on the use of water supplies; therefore, the focus on new technologies to remove algae from water bodies is demanding. The aim of the present study was to assess the effect of hydrodynamic cavitation on the inactivation of microalgae belonging to genus Scenedesmus . A laboratory-scale experimental apparatus was built in order to accomplish this goal; it consisted of a Venturi device designed to generate the cavitation phenomenon. Suspended microalgae samples were treated for 60 minutes under different cavitation intensities (cavitation number—Cv—ranging from 0.17 to 0.27). Results evidenced that microalgae decay over time can be modeled through first-order kinetics. The maximum removal efficiency (85%) was recorded at the highest cavitation intensity (Cv = 0.17). The removal efficiency decreased as the cavitation number increased. Hydrodynamic cavitation was effective in inactivating Scenedesmus ; it produced irreversible damages to cell morphology such as flotation spines removal, cell wall lesions, cytoplasm extravasation, and cavity formation. Assumingly, hydrodynamic cavitation has great potential to treat eutrophic water bodies. Furthermore, it represents a sustainable removal technique, since it does not produce secondary pollution.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-017-3624-x