Morita equivalence of C-correspondences passes to the related operator algebras

We revisit a central result of Muhly and Solel on operator algebras of C*-correspondences. We prove that (possibly non-injective) strongly Morita equivalent C*-correspondences have strongly Morita equivalent relative Cuntz–Pimsner C*-algebras. The same holds for strong Morita equivalence (in the sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2017, Vol.222 (2), p.949-972
Hauptverfasser: Eleftherakis, George K., Kakariadis, Evgenios T.A., Katsoulis, Elias G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit a central result of Muhly and Solel on operator algebras of C*-correspondences. We prove that (possibly non-injective) strongly Morita equivalent C*-correspondences have strongly Morita equivalent relative Cuntz–Pimsner C*-algebras. The same holds for strong Morita equivalence (in the sense of Blecher, Muhly and Paulsen) and strong Δ-equivalence (in the sense of Eleftherakis) for the related tensor algebras. In particular, we obtain stable isomorphism of the operator algebras when the equivalence is given by a σ -TRO. As an application we show that strong Morita equivalence coincides with strong Δ-equivalence for tensor algebras of aperiodic C*-correspondences.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-017-1609-5