Morita equivalence of C-correspondences passes to the related operator algebras
We revisit a central result of Muhly and Solel on operator algebras of C*-correspondences. We prove that (possibly non-injective) strongly Morita equivalent C*-correspondences have strongly Morita equivalent relative Cuntz–Pimsner C*-algebras. The same holds for strong Morita equivalence (in the sen...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2017, Vol.222 (2), p.949-972 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit a central result of Muhly and Solel on operator algebras of C*-correspondences. We prove that (possibly non-injective) strongly Morita equivalent C*-correspondences have strongly Morita equivalent relative Cuntz–Pimsner C*-algebras. The same holds for strong Morita equivalence (in the sense of Blecher, Muhly and Paulsen) and strong Δ-equivalence (in the sense of Eleftherakis) for the related tensor algebras. In particular, we obtain stable isomorphism of the operator algebras when the equivalence is given by a
σ
-TRO. As an application we show that strong Morita equivalence coincides with strong Δ-equivalence for tensor algebras of aperiodic C*-correspondences. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-017-1609-5 |