Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations

A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-12, Vol.90 (4), p.2783-2795
Hauptverfasser: Suresh Kumar, S., Balakrishnan, S., Sahadevan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2795
container_issue 4
container_start_page 2783
container_title Nonlinear dynamics
container_volume 90
creator Suresh Kumar, S.
Balakrishnan, S.
Sahadevan, R.
description A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.
doi_str_mv 10.1007/s11071-017-3837-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962320107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962320107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-J3XiEVVAK1UwAFInLMexi6skbu1kyIvxArwYicLAwnSnu___dfchdA30FijN7iIAzYBQyEiSJxnpT9AMFllCGBfbUzSjgqWECro9Rxcx7imlCaP5DH2sm9bsgipc5doeq6bEG2dw7OvatGEcqKqPLmJvcWmsD7Up8TPRvjtUQ9f4pnKNUQG_6s_w_VW6ZmcCNsdOtc438RKdWVVFc_Vb5-j98eFtuSKbl6f18n5DdAK8JdwqAcAKq4tcgy6LTFshUiZyASI1TGQFWCjYolCCC55yrrhYaJoDS5jgLJmjmyn3EPyxM7GVe9-F4fYoYdwzOuAZVDCpdPAxBmPlIbhahV4ClSNGOWGUA0Y5YpT94GGTJw7a8bk_yf-afgBBnnc5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962320107</pqid></control><display><type>article</type><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</creator><creatorcontrib>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</creatorcontrib><description>A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3837-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Deformation ; Differential equations ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mechanical Engineering ; Nonlinear equations ; Ordinary differential equations ; Original Paper ; Schrodinger equation ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-12, Vol.90 (4), p.2783-2795</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</citedby><cites>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3837-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3837-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Suresh Kumar, S.</creatorcontrib><creatorcontrib>Balakrishnan, S.</creatorcontrib><creatorcontrib>Sahadevan, R.</creatorcontrib><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Schrodinger equation</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-J3XiEVVAK1UwAFInLMexi6skbu1kyIvxArwYicLAwnSnu___dfchdA30FijN7iIAzYBQyEiSJxnpT9AMFllCGBfbUzSjgqWECro9Rxcx7imlCaP5DH2sm9bsgipc5doeq6bEG2dw7OvatGEcqKqPLmJvcWmsD7Up8TPRvjtUQ9f4pnKNUQG_6s_w_VW6ZmcCNsdOtc438RKdWVVFc_Vb5-j98eFtuSKbl6f18n5DdAK8JdwqAcAKq4tcgy6LTFshUiZyASI1TGQFWCjYolCCC55yrrhYaJoDS5jgLJmjmyn3EPyxM7GVe9-F4fYoYdwzOuAZVDCpdPAxBmPlIbhahV4ClSNGOWGUA0Y5YpT94GGTJw7a8bk_yf-afgBBnnc5</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Suresh Kumar, S.</creator><creator>Balakrishnan, S.</creator><creator>Sahadevan, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><author>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Schrodinger equation</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh Kumar, S.</creatorcontrib><creatorcontrib>Balakrishnan, S.</creatorcontrib><creatorcontrib>Sahadevan, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh Kumar, S.</au><au>Balakrishnan, S.</au><au>Sahadevan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>90</volume><issue>4</issue><spage>2783</spage><epage>2795</epage><pages>2783-2795</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3837-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2017-12, Vol.90 (4), p.2783-2795
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_1962320107
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Classical Mechanics
Control
Deformation
Differential equations
Dynamical Systems
Engineering
Mathematical analysis
Mechanical Engineering
Nonlinear equations
Ordinary differential equations
Original Paper
Schrodinger equation
Vibration
title Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20and%20Lie%20symmetry%20analysis%20of%20deformed%20N-coupled%20nonlinear%20Schr%C3%B6dinger%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Suresh%20Kumar,%20S.&rft.date=2017-12-01&rft.volume=90&rft.issue=4&rft.spage=2783&rft.epage=2795&rft.pages=2783-2795&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3837-y&rft_dat=%3Cproquest_cross%3E1962320107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962320107&rft_id=info:pmid/&rfr_iscdi=true