Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations
A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately a...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2017-12, Vol.90 (4), p.2783-2795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2795 |
---|---|
container_issue | 4 |
container_start_page | 2783 |
container_title | Nonlinear dynamics |
container_volume | 90 |
creator | Suresh Kumar, S. Balakrishnan, S. Sahadevan, R. |
description | A systematic investigation to derive the Lax pair and group theoretical properties of deformed
N
-coupled nonlinear Schrödinger equations (
N
-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for
N
=
1
and
N
=
2
are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible. |
doi_str_mv | 10.1007/s11071-017-3837-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962320107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962320107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-J3XiEVVAK1UwAFInLMexi6skbu1kyIvxArwYicLAwnSnu___dfchdA30FijN7iIAzYBQyEiSJxnpT9AMFllCGBfbUzSjgqWECro9Rxcx7imlCaP5DH2sm9bsgipc5doeq6bEG2dw7OvatGEcqKqPLmJvcWmsD7Up8TPRvjtUQ9f4pnKNUQG_6s_w_VW6ZmcCNsdOtc438RKdWVVFc_Vb5-j98eFtuSKbl6f18n5DdAK8JdwqAcAKq4tcgy6LTFshUiZyASI1TGQFWCjYolCCC55yrrhYaJoDS5jgLJmjmyn3EPyxM7GVe9-F4fYoYdwzOuAZVDCpdPAxBmPlIbhahV4ClSNGOWGUA0Y5YpT94GGTJw7a8bk_yf-afgBBnnc5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962320107</pqid></control><display><type>article</type><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</creator><creatorcontrib>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</creatorcontrib><description>A systematic investigation to derive the Lax pair and group theoretical properties of deformed
N
-coupled nonlinear Schrödinger equations (
N
-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for
N
=
1
and
N
=
2
are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3837-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Deformation ; Differential equations ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mechanical Engineering ; Nonlinear equations ; Ordinary differential equations ; Original Paper ; Schrodinger equation ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-12, Vol.90 (4), p.2783-2795</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</citedby><cites>FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3837-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3837-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Suresh Kumar, S.</creatorcontrib><creatorcontrib>Balakrishnan, S.</creatorcontrib><creatorcontrib>Sahadevan, R.</creatorcontrib><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A systematic investigation to derive the Lax pair and group theoretical properties of deformed
N
-coupled nonlinear Schrödinger equations (
N
-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for
N
=
1
and
N
=
2
are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Schrodinger equation</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-J3XiEVVAK1UwAFInLMexi6skbu1kyIvxArwYicLAwnSnu___dfchdA30FijN7iIAzYBQyEiSJxnpT9AMFllCGBfbUzSjgqWECro9Rxcx7imlCaP5DH2sm9bsgipc5doeq6bEG2dw7OvatGEcqKqPLmJvcWmsD7Up8TPRvjtUQ9f4pnKNUQG_6s_w_VW6ZmcCNsdOtc438RKdWVVFc_Vb5-j98eFtuSKbl6f18n5DdAK8JdwqAcAKq4tcgy6LTFshUiZyASI1TGQFWCjYolCCC55yrrhYaJoDS5jgLJmjmyn3EPyxM7GVe9-F4fYoYdwzOuAZVDCpdPAxBmPlIbhahV4ClSNGOWGUA0Y5YpT94GGTJw7a8bk_yf-afgBBnnc5</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Suresh Kumar, S.</creator><creator>Balakrishnan, S.</creator><creator>Sahadevan, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</title><author>Suresh Kumar, S. ; Balakrishnan, S. ; Sahadevan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6fa9112bfcb8c1cdb7cf9942989194e297b1f1b25ba9696466a695c0812329623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Schrodinger equation</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh Kumar, S.</creatorcontrib><creatorcontrib>Balakrishnan, S.</creatorcontrib><creatorcontrib>Sahadevan, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh Kumar, S.</au><au>Balakrishnan, S.</au><au>Sahadevan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>90</volume><issue>4</issue><spage>2783</spage><epage>2795</epage><pages>2783-2795</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A systematic investigation to derive the Lax pair and group theoretical properties of deformed
N
-coupled nonlinear Schrödinger equations (
N
-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for
N
=
1
and
N
=
2
are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3837-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2017-12, Vol.90 (4), p.2783-2795 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_1962320107 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Classical Mechanics Control Deformation Differential equations Dynamical Systems Engineering Mathematical analysis Mechanical Engineering Nonlinear equations Ordinary differential equations Original Paper Schrodinger equation Vibration |
title | Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20and%20Lie%20symmetry%20analysis%20of%20deformed%20N-coupled%20nonlinear%20Schr%C3%B6dinger%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Suresh%20Kumar,%20S.&rft.date=2017-12-01&rft.volume=90&rft.issue=4&rft.spage=2783&rft.epage=2795&rft.pages=2783-2795&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3837-y&rft_dat=%3Cproquest_cross%3E1962320107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962320107&rft_id=info:pmid/&rfr_iscdi=true |