Integrability and Lie symmetry analysis of deformed N-coupled nonlinear Schrödinger equations

A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-12, Vol.90 (4), p.2783-2795
Hauptverfasser: Suresh Kumar, S., Balakrishnan, S., Sahadevan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic investigation to derive the Lax pair and group theoretical properties of deformed N -coupled nonlinear Schrödinger equations ( N -coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for N = 1 and N = 2 are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-017-3837-y