Triangle Geometry for Qutrit States in the Probability Representation

We express the matrix elements of the density matrix of the qutrit state in terms of probabilities associated with artificial qubit states. We show that the quantum statistics of qubit states and observables is formally equivalent to the statistics of classical systems with three random vector varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Russian laser research 2017-09, Vol.38 (5), p.416-425
Hauptverfasser: Chernega, Vladimir N., Man’ko, Olga V., Man’ko, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We express the matrix elements of the density matrix of the qutrit state in terms of probabilities associated with artificial qubit states. We show that the quantum statistics of qubit states and observables is formally equivalent to the statistics of classical systems with three random vector variables and three classical probability distributions obeying special constrains found in this study. The Bloch spheres geometry of qubit states is mapped onto triangle geometry of qubits. We investigate the triada of Malevich’s squares describing the qubit states in quantum suprematism picture and the inequalities for the areas of the squares for qutrit (spin-1 system). We expressed quantum channels for qutrit states in terms of a linear transform of the probabilities determining the qutrit-state density matrix.
ISSN:1071-2836
1573-8760
DOI:10.1007/s10946-017-9662-4