A simplified nonlinear calculation method to describe the settlement of pre-bored grouting planted nodular piles

The pre-bored grouting planted nodular (PGPN) pile is a type of composite pile foundation that is considered to be environmentally friendly and economical. A simplified approach, which considers the two interfaces of the pile shaft, was proposed to analyze the load-displacement response of a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2017-11, Vol.18 (11), p.895-909
Hauptverfasser: Zhou, Jia-jin, Gong, Xiao-nan, Wang, Kui-hua, Zhang, Ri-hong, Yan, Jia-jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pre-bored grouting planted nodular (PGPN) pile is a type of composite pile foundation that is considered to be environmentally friendly and economical. A simplified approach, which considers the two interfaces of the pile shaft, was proposed to analyze the load-displacement response of a single PGPN pile. An elastic-failure model, based on the shear test results, was used to simulate the shearing behavior of the concrete-cemented soil interface. A hyperbolic nonlinear model, considering the influence of cement paste injection, was created to simulate the behavior between the skin friction and the relative displacement developed along the cemented soil-soil interface. A linear model and a nonlinear model that considers the reduction in the shearing stiffness were used to simulate the PGPN pile base load-displacement responses in a field test and in a model test, respectively. Comparisons between the calculated and measured load-displacement responses revealed relatively good agreement. The proposed approach is thus shown to be efficient and suitable for the analysis of a single PGPN pile embedded in layered soils, and is used to analyze the factors influencing its behavior. Enlarged cemented soil base is considered to be effective in promoting the behavior of a short PGPN pile, while increasing the diameter of cemented soil along the shaft is efficient in promoting the compressive bearing capacity of a long PGPN pile.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A1600640