On Stability of Solutions to Equations Describing Incompressible Heat-Conducting Motions Under Navier’s Boundary Conditions

In this paper we prove existence of global strong-weak two-dimensional solutions to the Navier-Stokes and heat equations coupled by the external force dependent on temperature and the heat dissipation, respectively. The existence is proved in a bounded domain with the Navier boundary conditions for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2017-12, Vol.152 (1), p.147-170
Hauptverfasser: Zadrzyńska, Ewa, Zaja̧czkowski, Wojciech M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove existence of global strong-weak two-dimensional solutions to the Navier-Stokes and heat equations coupled by the external force dependent on temperature and the heat dissipation, respectively. The existence is proved in a bounded domain with the Navier boundary conditions for velocity and the Dirichlet boundary condition for temperature. Next, we prove existence of 3d global strong solutions via stability.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-017-0116-3