On Stability of Solutions to Equations Describing Incompressible Heat-Conducting Motions Under Navier’s Boundary Conditions
In this paper we prove existence of global strong-weak two-dimensional solutions to the Navier-Stokes and heat equations coupled by the external force dependent on temperature and the heat dissipation, respectively. The existence is proved in a bounded domain with the Navier boundary conditions for...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2017-12, Vol.152 (1), p.147-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove existence of global strong-weak two-dimensional solutions to the Navier-Stokes and heat equations coupled by the external force dependent on temperature and the heat dissipation, respectively. The existence is proved in a bounded domain with the Navier boundary conditions for velocity and the Dirichlet boundary condition for temperature. Next, we prove existence of 3d global strong solutions via stability. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-017-0116-3 |