Petrogenesis and shock metamorphism of the enriched lherzolitic shergottite Northwest Africa 7755
Northwest Africa (NWA) 7755 is a newly found enriched lherzolitic shergottite. Here, we report its detailed petrography and mineralogy. NWA 7755 contains both poikilitic and non‐poikilitic lithologies. Olivine has different compositional ranges in the poikilitic and non‐poikilitic lithologies, Fa30–...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2017-11, Vol.52 (11), p.2437-2457 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Northwest Africa (NWA) 7755 is a newly found enriched lherzolitic shergottite. Here, we report its detailed petrography and mineralogy. NWA 7755 contains both poikilitic and non‐poikilitic lithologies. Olivine has different compositional ranges in the poikilitic and non‐poikilitic lithologies, Fa30–39 and Fa37–40, respectively. Pyroxene in the non‐poikilitic lithology is systematically Fe‐richer than that in the poikilitic lithology. The chromite grains in non‐poikilitic lithology are highly Ti‐richer than those in the poikilitic lithology. The chemical variations of olivine, pyroxene, and chromite between the poikilitic and non‐poikilitic lithologies support a two‐stage formation model of lherzolitic shergottites. Besides planar fractures and strong mosaicism in olivine and pyroxene, shock‐induced melt veins and pockets are observed in NWA 7755. Olivine grains within and adjacent to melt veins and/or pockets have either transformed to ringwoodite, amorphous phase, or dissociated to bridgmanite plus magnesiowüstite. Merrillite in melt veins has completely transformed to tuite; however, apatite only has partially transformed to tuite, indicating a relatively sluggish transformation rate. The partial transformation from apatite to tuite resulted in fractional devolatilization of Cl and F in apatite. The fine‐grained mineral assemblage in melt veins consists mainly of bridgmanite, minor magnesiowüstite, Fe‐sulfide, Fe‐phosphide, and Ca‐phosphate minerals. The coexistence of bridgmanite and magnesiowüstite in these veins indicates a shock pressure of >~24 GPa and a temperature of 1800–2000 °C. Coesite and seifertite are probably present in NWA 7755. The presence of these high‐pressure minerals indicates that NWA 7755 has experienced a more intense shock metamorphism than other enriched lherzolitic shergottites. |
---|---|
ISSN: | 1086-9379 1945-5100 |
DOI: | 10.1111/maps.12931 |