Centers of Path Algebras, Cohn and Leavitt Path Algebras

This paper is devoted to the study of the center of several types of path algebras associated to a graph E over a field K . First we consider the path algebra KE and prove that if the number of vertices is infinite then the center is zero; otherwise, it is K , except when the graph E is a cycle in w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2017-10, Vol.40 (4), p.1745-1767
Hauptverfasser: Corrales García, María G., Martín Barquero, Dolores, Martín González, Cándido, Siles Molina, Mercedes, Solanilla Hernández, José F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of the center of several types of path algebras associated to a graph E over a field K . First we consider the path algebra KE and prove that if the number of vertices is infinite then the center is zero; otherwise, it is K , except when the graph E is a cycle in which case the center is K [ x ], the polynomial algebra in one indeterminate. Then we compute the centers of prime Cohn and Leavitt path algebras. A lower and an upper bound for the center of a Leavitt path algebra are given by introducing the graded Baer radical for graded algebras. In the final section we describe the center of a prime graph C ∗ -algebra for a row-finite graph.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-015-0214-1