Nice Operators into G-Spaces

G -spaces are a class of L 1 -preduals introduced by Grothendieck. We prove that if every extreme operator from any Banach space into a G -space, X , is a nice operator (that is, its adjoint preserves extreme points), then X is isometrically isomorphic to c 0 ( I ) for some set I . One of the main p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2017-10, Vol.40 (4), p.1613-1621
Hauptverfasser: Cabrera-Serrano, Ana M., Mena-Jurado, Juan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G -spaces are a class of L 1 -preduals introduced by Grothendieck. We prove that if every extreme operator from any Banach space into a G -space, X , is a nice operator (that is, its adjoint preserves extreme points), then X is isometrically isomorphic to c 0 ( I ) for some set I . One of the main points in the proof is a characterization of spaces of type c 0 ( I ) by means of the structure topology on the extreme points of the dual space.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-015-0155-8