Nice Operators into G-Spaces
G -spaces are a class of L 1 -preduals introduced by Grothendieck. We prove that if every extreme operator from any Banach space into a G -space, X , is a nice operator (that is, its adjoint preserves extreme points), then X is isometrically isomorphic to c 0 ( I ) for some set I . One of the main p...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2017-10, Vol.40 (4), p.1613-1621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | G
-spaces are a class of
L
1
-preduals introduced by Grothendieck. We prove that if every extreme operator from any Banach space into a
G
-space,
X
, is a nice operator (that is, its adjoint preserves extreme points), then
X
is isometrically isomorphic to
c
0
(
I
)
for some set
I
. One of the main points in the proof is a characterization of spaces of type
c
0
(
I
)
by means of the structure topology on the extreme points of the dual space. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-015-0155-8 |