What Can We Learn from Predictive Modeling?
The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to...
Gespeichert in:
Veröffentlicht in: | Political analysis 2017-04, Vol.25 (2), p.145-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | Political analysis |
container_volume | 25 |
creator | Cranmer, Skyler J. Desmarais, Bruce A. |
description | The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not used to estimate the model’s parameters. Our goals are threefold. First, we review the central benefits of this under-utilized approach from a perspective uncommon in the existing literature: we focus on how predictive modeling can be used to complement and augment standard associational analyses. Second, we advance the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our approach through a detailed application to the prediction of interstate conflict. |
doi_str_mv | 10.1017/pan.2017.3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1961470677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_pan_2017_3</cupid><jstor_id>26563331</jstor_id><sourcerecordid>26563331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6333845627be555fa4c9e455bdc43ddc70a68cbd6fc27c01200634d2a995726e3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOI5u3AsFd2pr3mlWIsUXjOhCmWVIk3TsMNPUpCP4783QQQRX98D9OOfeA8ApggWCSFz3uitwEgXZAxNEBc-pLOV-0pCKHMlSHIKjGJcwMULKCbicf-ghq3SXzV02czp0WRP8OnsNzrZmaL9c9uytW7Xd4uYYHDR6Fd3Jbk7B-_3dW_WYz14enqrbWW4Io0POCSElZRyL2jHGGk2NdJSx2hpKrDUCal6a2vLGYGEgwhByQi3WUjKBuSNTcD769sF_blwc1NJvQpciFZI8fQW5EIm6GCkTfIzBNaoP7VqHb4Wg2pahUhlqW4YiCT4b4WUcfPglMWfba1HaX-3M9LoOrV24P5n_7X4Ac45nhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961470677</pqid></control><display><type>article</type><title>What Can We Learn from Predictive Modeling?</title><source>Worldwide Political Science Abstracts</source><source>JSTOR Archive Collection A-Z Listing</source><source>Political Science Complete</source><source>Cambridge University Press Journals Complete</source><creator>Cranmer, Skyler J. ; Desmarais, Bruce A.</creator><creatorcontrib>Cranmer, Skyler J. ; Desmarais, Bruce A.</creatorcontrib><description>The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not used to estimate the model’s parameters. Our goals are threefold. First, we review the central benefits of this under-utilized approach from a perspective uncommon in the existing literature: we focus on how predictive modeling can be used to complement and augment standard associational analyses. Second, we advance the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our approach through a detailed application to the prediction of interstate conflict.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1017/pan.2017.3</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bioinformatics ; Conflict ; Conflict management ; Criteria ; Hypotheses ; International relations ; Peace ; Political science ; Predictions ; Researchers ; Theory</subject><ispartof>Political analysis, 2017-04, Vol.25 (2), p.145-166</ispartof><rights>Copyright © The Author(s) 2017. Published by Cambridge University Press on behalf of the Society for Political Methodology.</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6333845627be555fa4c9e455bdc43ddc70a68cbd6fc27c01200634d2a995726e3</citedby><cites>FETCH-LOGICAL-c354t-6333845627be555fa4c9e455bdc43ddc70a68cbd6fc27c01200634d2a995726e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26563331$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198717000031/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,12845,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Cranmer, Skyler J.</creatorcontrib><creatorcontrib>Desmarais, Bruce A.</creatorcontrib><title>What Can We Learn from Predictive Modeling?</title><title>Political analysis</title><addtitle>Polit. Anal</addtitle><description>The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not used to estimate the model’s parameters. Our goals are threefold. First, we review the central benefits of this under-utilized approach from a perspective uncommon in the existing literature: we focus on how predictive modeling can be used to complement and augment standard associational analyses. Second, we advance the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our approach through a detailed application to the prediction of interstate conflict.</description><subject>Bioinformatics</subject><subject>Conflict</subject><subject>Conflict management</subject><subject>Criteria</subject><subject>Hypotheses</subject><subject>International relations</subject><subject>Peace</subject><subject>Political science</subject><subject>Predictions</subject><subject>Researchers</subject><subject>Theory</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEtLxDAUhYMoOI5u3AsFd2pr3mlWIsUXjOhCmWVIk3TsMNPUpCP4783QQQRX98D9OOfeA8ApggWCSFz3uitwEgXZAxNEBc-pLOV-0pCKHMlSHIKjGJcwMULKCbicf-ghq3SXzV02czp0WRP8OnsNzrZmaL9c9uytW7Xd4uYYHDR6Fd3Jbk7B-_3dW_WYz14enqrbWW4Io0POCSElZRyL2jHGGk2NdJSx2hpKrDUCal6a2vLGYGEgwhByQi3WUjKBuSNTcD769sF_blwc1NJvQpciFZI8fQW5EIm6GCkTfIzBNaoP7VqHb4Wg2pahUhlqW4YiCT4b4WUcfPglMWfba1HaX-3M9LoOrV24P5n_7X4Ac45nhw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Cranmer, Skyler J.</creator><creator>Desmarais, Bruce A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7UB</scope><scope>7XB</scope><scope>88F</scope><scope>88J</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KC-</scope><scope>M1Q</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>201704</creationdate><title>What Can We Learn from Predictive Modeling?</title><author>Cranmer, Skyler J. ; Desmarais, Bruce A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6333845627be555fa4c9e455bdc43ddc70a68cbd6fc27c01200634d2a995726e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bioinformatics</topic><topic>Conflict</topic><topic>Conflict management</topic><topic>Criteria</topic><topic>Hypotheses</topic><topic>International relations</topic><topic>Peace</topic><topic>Political science</topic><topic>Predictions</topic><topic>Researchers</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cranmer, Skyler J.</creatorcontrib><creatorcontrib>Desmarais, Bruce A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Politics Collection</collection><collection>Military Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cranmer, Skyler J.</au><au>Desmarais, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Can We Learn from Predictive Modeling?</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. Anal</addtitle><date>2017-04</date><risdate>2017</risdate><volume>25</volume><issue>2</issue><spage>145</spage><epage>166</epage><pages>145-166</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not used to estimate the model’s parameters. Our goals are threefold. First, we review the central benefits of this under-utilized approach from a perspective uncommon in the existing literature: we focus on how predictive modeling can be used to complement and augment standard associational analyses. Second, we advance the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our approach through a detailed application to the prediction of interstate conflict.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/pan.2017.3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2017-04, Vol.25 (2), p.145-166 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_journals_1961470677 |
source | Worldwide Political Science Abstracts; JSTOR Archive Collection A-Z Listing; Political Science Complete; Cambridge University Press Journals Complete |
subjects | Bioinformatics Conflict Conflict management Criteria Hypotheses International relations Peace Political science Predictions Researchers Theory |
title | What Can We Learn from Predictive Modeling? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Can%20We%20Learn%20from%20Predictive%20Modeling?&rft.jtitle=Political%20analysis&rft.au=Cranmer,%20Skyler%20J.&rft.date=2017-04&rft.volume=25&rft.issue=2&rft.spage=145&rft.epage=166&rft.pages=145-166&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1017/pan.2017.3&rft_dat=%3Cjstor_proqu%3E26563331%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961470677&rft_id=info:pmid/&rft_cupid=10_1017_pan_2017_3&rft_jstor_id=26563331&rfr_iscdi=true |