What Can We Learn from Predictive Modeling?

The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2017-04, Vol.25 (2), p.145-166
Hauptverfasser: Cranmer, Skyler J., Desmarais, Bruce A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The large majority of inferences drawn in empirical political research follow from model-based associations (e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach. Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not used to estimate the model’s parameters. Our goals are threefold. First, we review the central benefits of this under-utilized approach from a perspective uncommon in the existing literature: we focus on how predictive modeling can be used to complement and augment standard associational analyses. Second, we advance the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our approach through a detailed application to the prediction of interstate conflict.
ISSN:1047-1987
1476-4989
DOI:10.1017/pan.2017.3