Safety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft with State and Input Constraints

This paper develops a safety-guaranteed trajectory tracking controller for hovercraft by using a safety-guaranteed auxiliary dynamic system, an integral sliding mode control, and an adaptive neural network method. The safety-guaranteed auxiliary dynamic system is designed to implement system state a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Fu, Mingyu, Wang, Chenglong, Gao, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a safety-guaranteed trajectory tracking controller for hovercraft by using a safety-guaranteed auxiliary dynamic system, an integral sliding mode control, and an adaptive neural network method. The safety-guaranteed auxiliary dynamic system is designed to implement system state and input constraints. By considering the relationship of velocity and resistance hump, the velocity of hovercraft is constrained to eliminate the effect of resistance hump and obtain better stability. And the safety limit of drift angle is well performed to guarantee the light safe maneuvers of hovercraft tracking with high velocities. In view of the natural capabilities of actuators, the control input is constrained. High nonlinearity and model uncertainties of hovercraft are approximated by employing adaptive radical basis function neural networks. The proposed controller guarantees the boundedness of all the closed-loop signals. Specifically, the tracking errors are uniformly ultimately bounded. Numerical simulations are implemented to demonstrate the efficacy of the designed controller.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/9452920