A Proximal Fully Parallel Splitting Method for Stable Principal Component Pursuit

As a special three-block separable convex programming, the stable principal component pursuit (SPCP) arises in many different disciplines, such as statistical learning, signal processing, and web data ranking. In this paper, we propose a proximal fully parallel splitting method (PFPSM) for solving S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-15
Hauptverfasser: Sun, Hongchun, Sun, Min, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a special three-block separable convex programming, the stable principal component pursuit (SPCP) arises in many different disciplines, such as statistical learning, signal processing, and web data ranking. In this paper, we propose a proximal fully parallel splitting method (PFPSM) for solving SPCP, in which the resulting subproblems all admit closed-form solutions and can be solved in distributed manners. Compared with other similar algorithms in the literature, PFPSM attaches a Glowinski relaxation factor η∈3/2,2/3 to the updating formula for its Lagrange multiplier, which can be used to accelerate the convergence of the generated sequence. Under mild conditions, the global convergence of PFPSM is proved. Preliminary computational results show that the proposed algorithm works very well in practice.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/9674528