Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium

A defined consortium of Ralstonia pickettii L2 (bacterium) and Trichoderma viride LW-1 (fungus) was selected to assess its potential for the enhanced biodegradation of mono-chlorobenzene (CB). At an initial concentration of 220 mg L−1 CB, the developed consortium showed an enhanced degradation rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International biodeterioration & biodegradation 2017-09, Vol.123, p.276-285
Hauptverfasser: Cheng, Zhuowei, Li, Chao, Kennes, Christian, Ye, Jiexu, Chen, Dongzhi, Zhang, Shihan, Chen, Jianmeng, Yu, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A defined consortium of Ralstonia pickettii L2 (bacterium) and Trichoderma viride LW-1 (fungus) was selected to assess its potential for the enhanced biodegradation of mono-chlorobenzene (CB). At an initial concentration of 220 mg L−1 CB, the developed consortium showed an enhanced degradation rate of 0.50 mg CB·g−1protein·h−1, while the individual Ralstonia sp. L2 and Trichoderma sp. LW-1 showed average degradation rates of 0.34 and 0.32 mg CB·g−1protein·h−1, respectively. A CO2 conversion level of up to 86.3% reflected a possible high mineralization extent of CB by the co-culture. The estimated μmax and vmax values were 0.36 h−1 and 0.41 h−1 for the consortium, which were much higher than the values obtained by each strain individually. 2-Chlorophenol (2-CP) accumulated in the growth medium of strain L2 and inhibited its growth, but it could be consumed quickly by the fungus LW-1, providing a possibility to reach complete biodegradation of CB in a short time. Real-time PCR revealed that bacterium L2 played a major role in the initial stage, and that fungus LW-1 grew well if 2-CP was generated. These results suggest that the fungal-bacterial consortium might be effectively applied for complete biodegradation of CB and have a potential environmental implication in purification of CB-contaminated environments. [Display omitted] •First report on the use of a fungal-bacterial consortium for the biodegradation of CB.•The biodegradation rate of consortium was 1.5 times more than that of single one.•The addition of fungus LW-1 could relieve the inhibition of 2-CP to bacterium L2.•RT-PCR analysis confirmed the strains growing with different rates at various times.•The interactions within the different microorganisms led to the enhanced biodegradation.
ISSN:0964-8305
1879-0208
DOI:10.1016/j.ibiod.2017.07.008