A new analytical approach to consistency and overfitting in regularized empirical risk minimization

This work considers the problem of binary classification: given training data x 1, . . ., x n from a certain population, together with associated labels y 1,. . ., y n ∈ {0,1}, determine the best label for an element x not among the training data. More specifically, this work considers a variant of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2017-12, Vol.28 (6), p.886-921
Hauptverfasser: GARCÍA TRILLOS, NICOLÁS, MURRAY, RYAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work considers the problem of binary classification: given training data x 1, . . ., x n from a certain population, together with associated labels y 1,. . ., y n ∈ {0,1}, determine the best label for an element x not among the training data. More specifically, this work considers a variant of the regularized empirical risk functional which is defined intrinsically to the observed data and does not depend on the underlying population. Tools from modern analysis are used to obtain a concise proof of asymptotic consistency as regularization parameters are taken to zero at rates related to the size of the sample. These analytical tools give a new framework for understanding overfitting and underfitting, and rigorously connect the notion of overfitting with a loss of compactness.
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792517000201