Maximal Hypersurfaces in Spacetimes with a Nonvanishing Spacelike Killing Field

We consider four-dimensional vacuum spacetimes which admit a nonvanishing spacelike Killing field. The quotient with respect to the Killing action is a three-dimensional quotient spacetime ( M ,  g ). We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2017-11, Vol.18 (11), p.3633-3649
1. Verfasser: Bulawa, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider four-dimensional vacuum spacetimes which admit a nonvanishing spacelike Killing field. The quotient with respect to the Killing action is a three-dimensional quotient spacetime ( M ,  g ). We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean curvature) in such quotient spacetimes. First, we show that a complete noncompact maximal hypersurface must either be a cylinder S 1 × R with flat metric or else conformal to the Euclidean plane R 2 . Second, we establish positivity of mass for certain maximal hypersurfaces, referring to a analogue of ADM mass adapted for the quotient setting. Finally, while lapse functions corresponding to the maximal hypersurface gauge are necessarily bounded in the four-dimensional asymptotically Euclidean setting, we show that nontrivial quotient spacetimes admit the maximal hypersurface gauge only with unbounded lapse.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-017-0610-1