Maximal Hypersurfaces in Spacetimes with a Nonvanishing Spacelike Killing Field
We consider four-dimensional vacuum spacetimes which admit a nonvanishing spacelike Killing field. The quotient with respect to the Killing action is a three-dimensional quotient spacetime ( M , g ). We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2017-11, Vol.18 (11), p.3633-3649 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider four-dimensional vacuum spacetimes which admit a nonvanishing spacelike Killing field. The quotient with respect to the Killing action is a three-dimensional quotient spacetime (
M
,
g
). We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean curvature) in such quotient spacetimes. First, we show that a complete noncompact maximal hypersurface must either be a cylinder
S
1
×
R
with flat metric or else conformal to the Euclidean plane
R
2
. Second, we establish positivity of mass for certain maximal hypersurfaces, referring to a analogue of ADM mass adapted for the quotient setting. Finally, while lapse functions corresponding to the maximal hypersurface gauge are necessarily bounded in the four-dimensional asymptotically Euclidean setting, we show that nontrivial quotient spacetimes admit the maximal hypersurface gauge only with unbounded lapse. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-017-0610-1 |