Vector bundles whose restriction to a linear section is Ulrich
An Ulrich sheaf on an n -dimensional projective variety X ⊆ P N is an initialized ACM sheaf which has the maximum possible number of global sections. Using a construction based on the representation theory of Roby–Clifford algebras, we prove that every normal ACM variety admits a reflexive sheaf who...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-12, Vol.287 (3-4), p.1307-1326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An Ulrich sheaf on an
n
-dimensional projective variety
X
⊆
P
N
is an initialized ACM sheaf which has the maximum possible number of global sections. Using a construction based on the representation theory of Roby–Clifford algebras, we prove that every normal ACM variety admits a reflexive sheaf whose restriction to a general 1-dimensional linear section is Ulrich; we call such sheaves
δ
-Ulrich. In the case
n
=
2
,
where
δ
-Ulrich sheaves satisfy the property that their direct image under a general finite linear projection to
P
2
is a semistable instanton bundle on
P
2
, we show that some high Veronese embedding of
X
admits a
δ
-Ulrich sheaf with a global section. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-017-1869-0 |