Two Classes of Quadratic APN Binomials Inequivalent to Power Functions
This paper introduces the first found infinite classes of almost perfect nonlinear (APN) polynomials which are not Carlet-Charpin-Zinoviev (CCZ)-equivalent to power functions (at least for some values of the number of variables). These are two classes of APN binomials from F 2n to F 2n (for n divisi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2008-09, Vol.54 (9), p.4218-4229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces the first found infinite classes of almost perfect nonlinear (APN) polynomials which are not Carlet-Charpin-Zinoviev (CCZ)-equivalent to power functions (at least for some values of the number of variables). These are two classes of APN binomials from F 2n to F 2n (for n divisible by 3, resp., 4). We prove that these functions are extended affine (EA)-inequivalent to any power function and that they are CCZ-inequivalent to the Gold, Kasami, inverse, and Dobbertin functions when n ges 12. This means that for n even they are CCZ-inequivalent to any known APN function. In particular, for n = 12,20,24, they are therefore CCZ-inequivalent to any power function. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2008.928275 |