Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes

The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-09, Vol.54 (9), p.3865-3872
Hauptverfasser: Gaborit, P., Zemor, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3872
container_issue 9
container_start_page 3865
container_title IEEE transactions on information theory
container_volume 54
creator Gaborit, P.
Zemor, G.
description The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.
doi_str_mv 10.1109/TIT.2008.928288
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195925141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4608966</ieee_id><sourcerecordid>34703626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-93c52c0f9e66d85fd158573c9cde4ae2faf74841a444611e000d6f6326ec0c663</originalsourceid><addsrcrecordid>eNp9kT1v2zAQhomiAeqmmTt0EQqkRQc5PIqkyNE1msSAgSxOVoKljrACSXRI2UD-fSgo8NCh04G85z7eewn5CnQJQPXNbrNbMkrVUjPFlPpAFiBEXWop-EeyoBRUqTlXn8jnlJ7zkwtgC3K7Sq_9YQxj64pNf4jhhD0OYxF8Me6xuGu7vxjH8snGtLd9OBW_w3FoCh9isW0HtLFYhwbTF3LhbZfw6j1eksfbP7v1fbl9uNusV9vSCcbGUlc5Ouo1Stko4RsQStSV065BbpF562uuOFjOuQRASmkjvayYREedlNUl-TX33dvOHGLb2_hqgm3N_Wprpr9JJ_AaTpDZnzObVb0cMY2mb5PDrrMDhmMyGrSueCVYJn_8l6x4TSvJpvHf_wGfwzEOWbEBLTQTwKe5NzPkYkgpoj8vCtRMVplslZmsMrNVueL6va1NznY-2sG16VzGqIR8pWnPbzPXIuI5zSVVOt_mDYm3mYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925141</pqid></control><display><type>article</type><title>Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes</title><source>IEEE Xplore</source><creator>Gaborit, P. ; Zemor, G.</creator><creatorcontrib>Gaborit, P. ; Zemor, G.</creatorcontrib><description>The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.928288</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Binary codes ; Binary system ; Codes ; Coding, codes ; Computer Science ; Double circulant code ; Exact sciences and technology ; Gilbert-Varshamov (GV) bound ; Graph theory ; H infinity control ; Hamming distance ; Information processing ; Information Theory ; Information, signal and communications theory ; Linear code ; Mathematics ; Nonlinear systems ; Nonlinearity ; random coding ; Signal and communications theory ; Stands ; Supports ; Telecommunications and information theory ; Welding</subject><ispartof>IEEE transactions on information theory, 2008-09, Vol.54 (9), p.3865-3872</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-93c52c0f9e66d85fd158573c9cde4ae2faf74841a444611e000d6f6326ec0c663</citedby><cites>FETCH-LOGICAL-c522t-93c52c0f9e66d85fd158573c9cde4ae2faf74841a444611e000d6f6326ec0c663</cites><orcidid>0000-0002-6041-9554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4608966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4608966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20615732$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00181471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaborit, P.</creatorcontrib><creatorcontrib>Zemor, G.</creatorcontrib><title>Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Binary codes</subject><subject>Binary system</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Computer Science</subject><subject>Double circulant code</subject><subject>Exact sciences and technology</subject><subject>Gilbert-Varshamov (GV) bound</subject><subject>Graph theory</subject><subject>H infinity control</subject><subject>Hamming distance</subject><subject>Information processing</subject><subject>Information Theory</subject><subject>Information, signal and communications theory</subject><subject>Linear code</subject><subject>Mathematics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>random coding</subject><subject>Signal and communications theory</subject><subject>Stands</subject><subject>Supports</subject><subject>Telecommunications and information theory</subject><subject>Welding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1v2zAQhomiAeqmmTt0EQqkRQc5PIqkyNE1msSAgSxOVoKljrACSXRI2UD-fSgo8NCh04G85z7eewn5CnQJQPXNbrNbMkrVUjPFlPpAFiBEXWop-EeyoBRUqTlXn8jnlJ7zkwtgC3K7Sq_9YQxj64pNf4jhhD0OYxF8Me6xuGu7vxjH8snGtLd9OBW_w3FoCh9isW0HtLFYhwbTF3LhbZfw6j1eksfbP7v1fbl9uNusV9vSCcbGUlc5Ouo1Stko4RsQStSV065BbpF562uuOFjOuQRASmkjvayYREedlNUl-TX33dvOHGLb2_hqgm3N_Wprpr9JJ_AaTpDZnzObVb0cMY2mb5PDrrMDhmMyGrSueCVYJn_8l6x4TSvJpvHf_wGfwzEOWbEBLTQTwKe5NzPkYkgpoj8vCtRMVplslZmsMrNVueL6va1NznY-2sG16VzGqIR8pWnPbzPXIuI5zSVVOt_mDYm3mYs</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Gaborit, P.</creator><creator>Zemor, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6041-9554</orcidid></search><sort><creationdate>20080901</creationdate><title>Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes</title><author>Gaborit, P. ; Zemor, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-93c52c0f9e66d85fd158573c9cde4ae2faf74841a444611e000d6f6326ec0c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Binary codes</topic><topic>Binary system</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Computer Science</topic><topic>Double circulant code</topic><topic>Exact sciences and technology</topic><topic>Gilbert-Varshamov (GV) bound</topic><topic>Graph theory</topic><topic>H infinity control</topic><topic>Hamming distance</topic><topic>Information processing</topic><topic>Information Theory</topic><topic>Information, signal and communications theory</topic><topic>Linear code</topic><topic>Mathematics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>random coding</topic><topic>Signal and communications theory</topic><topic>Stands</topic><topic>Supports</topic><topic>Telecommunications and information theory</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaborit, P.</creatorcontrib><creatorcontrib>Zemor, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaborit, P.</au><au>Zemor, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>54</volume><issue>9</issue><spage>3865</spage><epage>3872</epage><pages>3865-3872</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.928288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6041-9554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2008-09, Vol.54 (9), p.3865-3872
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195925141
source IEEE Xplore
subjects Applied sciences
Asymptotic properties
Binary codes
Binary system
Codes
Coding, codes
Computer Science
Double circulant code
Exact sciences and technology
Gilbert-Varshamov (GV) bound
Graph theory
H infinity control
Hamming distance
Information processing
Information Theory
Information, signal and communications theory
Linear code
Mathematics
Nonlinear systems
Nonlinearity
random coding
Signal and communications theory
Stands
Supports
Telecommunications and information theory
Welding
title Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Improvement%20of%20the%20Gilbert-Varshamov%20Bound%20for%20Linear%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gaborit,%20P.&rft.date=2008-09-01&rft.volume=54&rft.issue=9&rft.spage=3865&rft.epage=3872&rft.pages=3865-3872&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.928288&rft_dat=%3Cproquest_RIE%3E34703626%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925141&rft_id=info:pmid/&rft_ieee_id=4608966&rfr_iscdi=true