Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes
The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2008-09, Vol.54 (9), p.3865-3872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2008.928288 |