Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes

The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-09, Vol.54 (9), p.3865-3872
Hauptverfasser: Gaborit, P., Zemor, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gilbert-Varshamov (GV) bound states that the maximum size A 2 (n, d) of a binary code of length n and minimum distance d satisfies A 2 (n, d)ges2 n /V(n, d-1) where V(n, d)=Sigma i=0 d ( i n ) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A 2 (n, d)gescn2 n /(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.928288