On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory

For a stationary additive Gaussian-noise channel with a rational noise power spectrum of a finite-order L, we derive two new results for the feedback capacity under an average channel input power constraint. First, we show that a very simple feedback-dependent Gauss-Markov source achieves the feedba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2007-03, Vol.53 (3), p.929-954
Hauptverfasser: Shaohua Yang, Kavcic, A., Tatikonda, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a stationary additive Gaussian-noise channel with a rational noise power spectrum of a finite-order L, we derive two new results for the feedback capacity under an average channel input power constraint. First, we show that a very simple feedback-dependent Gauss-Markov source achieves the feedback capacity, and that Kalman-Bucy filtering is optimal for processing the feedback. Based on these results, we develop a new method for optimizing the channel inputs for achieving the Cover-Pombra block-length- n feedback capacity by using a dynamic programming approach that decomposes the computation into n sequentially identical optimization problems where each stage involves optimizing O(L 2 ) variables. Second, we derive the explicit maximal information rate for stationary feedback-dependent sources. In general, evaluating the maximal information rate for stationary sources requires solving only a few equations by simple nonlinear programming. For first-order autoregressive and/or moving average (ARMA) noise channels, this optimization admits a closed-form maximal information rate formula. The maximal information rate for stationary sources is a lower bound on the feedback capacity, and it equals the feedback capacity if the long-standing conjecture, that stationary sources achieve the feedback capacity, holds
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.890728