Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics

xPb(Zn0.5Te0.5)O3–(1−x)Pb(Zr0.5Ti0.5)O3 (PZnTe–PZT) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2018-01, Vol.101 (1), p.274-282
Hauptverfasser: Huang, Xiang, Zeng, Jiangtao, Ruan, Xuezheng, Zheng, Liaoying, Li, Guorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:xPb(Zn0.5Te0.5)O3–(1−x)Pb(Zr0.5Ti0.5)O3 (PZnTe–PZT) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (MPB) existed at the composition of x = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the PZnTe was added in. The PZnTe–PZT ceramics at the MPB composition showed the largest high field effective piezoelectric coefficient d33∗ and the lowest strain hysteresis H. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in Tm temperature vs x content and a DPT behavior was found in xPZnTe–(1−x)PZT (x = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of DPT in PZnTe–PZT ceramics.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.15179