Subdiagrams and invariant measures on Bratteli diagrams

We study ergodic finite and infinite measures defined on the path space $X_{B}$ of a Bratteli diagram $B$ which are invariant with respect to the tail equivalence relation on $X_{B}$ . Our interest is focused on measures supported by vertex and edge subdiagrams of $B$ . We give several criteria when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2017-12, Vol.37 (8), p.2417-2452
Hauptverfasser: ADAMSKA, M., BEZUGLYI, S., KARPEL, O., KWIATKOWSKI, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study ergodic finite and infinite measures defined on the path space $X_{B}$ of a Bratteli diagram $B$ which are invariant with respect to the tail equivalence relation on $X_{B}$ . Our interest is focused on measures supported by vertex and edge subdiagrams of $B$ . We give several criteria when a finite invariant measure defined on the path space of a subdiagram of $B$ extends to a finite invariant measure on $B$ . Given a finite ergodic measure on a Bratteli diagram $B$ and a subdiagram $B^{\prime }$ of $B$ , we find the necessary and sufficient conditions under which the measure of the path space $X_{B^{\prime }}$ of $B^{\prime }$ is positive. For a class of Bratteli diagrams of finite rank, we determine when they have maximal possible number of ergodic invariant measures. The case of diagrams of rank two is completely studied. We also include an example which explicitly illustrates the proven results.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2016.8