New bounds on the expected length of one-to-one codes
We provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L/spl ges/H-log(H+1)-Hlog(1+1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as functio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1996-01, Vol.42 (1), p.246-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L/spl ges/H-log(H+1)-Hlog(1+1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as function of H and the most likely source letter probability. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.481795 |