New bounds on the expected length of one-to-one codes

We provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L/spl ges/H-log(H+1)-Hlog(1+1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1996-01, Vol.42 (1), p.246-250
Hauptverfasser: Blundo, C., De Prisco, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L/spl ges/H-log(H+1)-Hlog(1+1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as function of H and the most likely source letter probability.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.481795