Axiomatic geometry of conditional models
We formulate and prove an axiomatic characterization of the Riemannian geometry underlying manifolds of conditional models. The characterization holds for both normalized and nonnormalized conditional models. In the normalized case, the characterization extends the derivation of the Fisher informati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2005-04, Vol.51 (4), p.1283-1294 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate and prove an axiomatic characterization of the Riemannian geometry underlying manifolds of conditional models. The characterization holds for both normalized and nonnormalized conditional models. In the normalized case, the characterization extends the derivation of the Fisher information by Cencov while in the nonnormalized case it extends Campbell's theorem. Due to the close connection between the conditional I-divergence and the product Fisher information metric, we provides a new axiomatic interpretation of the geometries underlying logistic regression and AdaBoost |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2005.844060 |