Refinements of Pinsker's inequality

Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda's (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2003-06, Vol.49 (6), p.1491-1498
Hauptverfasser: Fedotov, A.A., Harremoes, P., Topsoe, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda's (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby to extensions of the classical Pinsker (1960) inequality which has numerous applications, cf. Pinsker and followers.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2003.811927