Refinements of Pinsker's inequality
Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda's (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor po...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2003-06, Vol.49 (6), p.1491-1498 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda's (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby to extensions of the classical Pinsker (1960) inequality which has numerous applications, cf. Pinsker and followers. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2003.811927 |