Optimal tight frames and quantum measurement
Tight frames and rank-one quantum measurements are shown to be intimately related. In fact, the family of normalized tight frames for the space in which a quantum-mechanical system lies is precisely the family of rank-one generalized quantum measurements on that space. Using this relationship, frame...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2002-03, Vol.48 (3), p.599-610 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tight frames and rank-one quantum measurements are shown to be intimately related. In fact, the family of normalized tight frames for the space in which a quantum-mechanical system lies is precisely the family of rank-one generalized quantum measurements on that space. Using this relationship, frame-theoretical analogs of various quantum-mechanical concepts and results are developed. The analog of a least-squares quantum measurement is a tight frame that is closest in a least-squares sense to a given set of vectors. The least-squares tight frame is found for both the case in which the scaling of the frame is specified (constrained least-squares frame (CLSF)) and the case in which the scaling is chosen to minimize the least-squares error (unconstrained least-squares frame (ULSF)). The well-known canonical frame is shown to be proportional to the ULSF and to coincide with the CLSF with a certain scaling. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.985949 |