Relative stability of global errors of nonparametric function estimators

This paper presents relative stability properties of various nonparametric density estimators (histogram, kernel estimates) and of regression estimators (partitioning, kernel, and nearest neighbor estimates). In density estimation, let En denote the L/sub 1/ error of an estimate calculated from n da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-08, Vol.48 (8), p.2230-2242
Hauptverfasser: Gyorfi, L., Schafer, D., Walk, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents relative stability properties of various nonparametric density estimators (histogram, kernel estimates) and of regression estimators (partitioning, kernel, and nearest neighbor estimates). In density estimation, let En denote the L/sub 1/ error of an estimate calculated from n data, whereas in regression estimation, the L/sub 2/ error of the estimate is used. Sufficient conditions for E/sub n//E{E/sub n/}/spl rarr/1 in probability are provided. If this limit holds, the asymptotic behavior of the random error E/sub n/ can be characterized by its expectation E{E/sub n/},, and one may apply, for example, the established rate-of-convergence results for E{En}.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2002.800491