A generic approach to diffusion filtering of matrix-fields
Diffusion tensor magnetic resonance imaging, is a image acquisition method, that provides matrix- valued data, so-called matrix fields. Hence image processing tools for the filtering and analysis of these data types are in demand. In this article, we propose a generic framework that allows us to fin...
Gespeichert in:
Veröffentlicht in: | Computing 2007-11, Vol.81 (2-3), p.179-197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diffusion tensor magnetic resonance imaging, is a image acquisition method, that provides matrix- valued data, so-called matrix fields. Hence image processing tools for the filtering and analysis of these data types are in demand. In this article, we propose a generic framework that allows us to find the matrix-valued counterparts of the Perona-Malik PDEs with various diffusivity functions. To this end we extend the notion of derivatives and associated differential operators to matrix fields of symmetric matrices by adopting an operator-algebraic point of view. In order to solve these novel matrix-valued PDEs successfully we develop truly matrix-valued analogs to numerical solution schemes of the scalar setting. Numerical experiments performed on both synthetic and real world data substantiate the effectiveness of our novel matrix-valued Perona-Malik diffusion filters. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0010-485X 1436-5057 |
DOI: | 10.1007/s00607-007-0248-9 |