Increased Synthetic Control--Gaining Access to Predicted Mg2Si5N8 and [beta]-Ca2Si5N8

Nitridosilicates represent an intriguing class of materials and are typically made up of highly condensed tetrahedral network structures. Alkaline-earth nitridosilicates emerged as unique host materials for Eu2+ doped luminophores which found broad application in phosphor-converted (pc)-LEDs. In con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-04, Vol.56 (17), p.4810
Hauptverfasser: Bielec, Philipp, Schnick, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitridosilicates represent an intriguing class of materials and are typically made up of highly condensed tetrahedral network structures. Alkaline-earth nitridosilicates emerged as unique host materials for Eu2+ doped luminophores which found broad application in phosphor-converted (pc)-LEDs. In contrast to common strategies of preparing nitridosilicates by bottom-up syntheses, we have now succeeded to post-synthetically design nitridosilicates by ion exchange in metal halide melts. We describe the syntheses of hitherto unknown but predicted alkaline-earth nitridosilicates, Mg2Si5N8 and [beta]-Ca2Si5N8. Both compounds were obtained by ion exchange starting from pre-synthesized nitridosilicates. Insitu investigations of the ion-exchange process show that the Si-N network topology remains preserved. Therefore the reaction offers a significant increase of synthetic control with respect to classical bottom-up syntheses.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201701361