Covering numbers of isotropic reproducing kernels on compact two‐point homogeneous spaces
In this paper we present upper and lower estimates for the covering numbers of the unit ball of a reproducing kernel Hilbert space associated to a continuous isotropic kernel on a compact two‐point homogeneous space (CTPHS). These estimates are obtained from estimates on the decay of the Fourier–Jac...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2017-11, Vol.290 (16), p.2444-2458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present upper and lower estimates for the covering numbers of the unit ball of a reproducing kernel Hilbert space associated to a continuous isotropic kernel on a compact two‐point homogeneous space (CTPHS). These estimates are obtained from estimates on the decay of the Fourier–Jacobi coefficients of the kernel via applications of the Funk–Hecke formula and the Schoenberg series representation of an isotropic kernel on CTPHS and also by the use of cubature formulas on these spaces. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201600125 |