A quick and effective method for capacitated lot sizing with startup and reservation costs

We present a pure zerp-one integer programming model for determining single-item production lot sizes in capacitated “long production run” environments, where each production period is dedicated to a single product, and where production of a given item may extend over more than one production period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 1995-07, Vol.22 (6), p.641-653
Hauptverfasser: Coleman, B.Jay, McKnew, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 6
container_start_page 641
container_title Computers & operations research
container_volume 22
creator Coleman, B.Jay
McKnew, Mark A.
description We present a pure zerp-one integer programming model for determining single-item production lot sizes in capacitated “long production run” environments, where each production period is dedicated to a single product, and where production of a given item may extend over more than one production period. All costs, as well as capacity, are time-varying, and include startup (changeover), reservation (opportunity), holding, and production costs. Holding and production cost may also vary within a period. The problem setting is effectively the single-item subproblem of the “multiple product cycling” case. Our a model is efficient primarily because of variable elimination strategies associated with capacity limitations. Although our formulation makes two simplifying assumptions versus previous research, these did not significantly hamper model performance. Experimentation on problems from the literature yielded a 93% optimality frequency, with less than 60 pivots required for 20 period problems, a tremendous efficiency improvement over previous models. As such, the model represents an excellent and practical first step toward efficiently solving multiple product problems on an industrial scale.
doi_str_mv 10.1016/0305-0548(94)00039-B
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195819816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030505489400039B</els_id><sourcerecordid>8984859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-8b03a4995835ae93a4c7a0ac2221f0798ad6113146c10cdd98bd060a26d28c8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEMQD3pYnWz2I7kItvgFghcF8RLGJGtT66YmaUV_vakVj55mDs_7DvMQss_ghAFrToFDXUBdiSNZHQMAl8VogwyYaHnRNvXjJhn8IdtkJ8ZphqAt2YA8ndP3hdOvFHtDbddZndzS0jebJt7QzgeqcY7aJUzW0JlPNLov17_QD5cmNCYMaTH_CQcbbVhicr6n2scUd8lWh7No937nkDxcXtyPr4vbu6ub8fltoXkDqRDPwLGSsha8RivzrlsE1GVZsg5aKdA0jHFWNZqBNkaKZwMNYNmYUmjR8SE5WPfOg39f2JjU1C9Cn08qlluZFKzJULWGdPAxBtupeXBvGD4VA7WSqFaG1MqQkpX6kahGOXb4241R46wL2GsX_7K8Zjmwaj9bYzb_uXQ2qKid7bU1LmSjynj3_51v1buFTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195819816</pqid></control><display><type>article</type><title>A quick and effective method for capacitated lot sizing with startup and reservation costs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Coleman, B.Jay ; McKnew, Mark A.</creator><creatorcontrib>Coleman, B.Jay ; McKnew, Mark A.</creatorcontrib><description>We present a pure zerp-one integer programming model for determining single-item production lot sizes in capacitated “long production run” environments, where each production period is dedicated to a single product, and where production of a given item may extend over more than one production period. All costs, as well as capacity, are time-varying, and include startup (changeover), reservation (opportunity), holding, and production costs. Holding and production cost may also vary within a period. The problem setting is effectively the single-item subproblem of the “multiple product cycling” case. Our a model is efficient primarily because of variable elimination strategies associated with capacity limitations. Although our formulation makes two simplifying assumptions versus previous research, these did not significantly hamper model performance. Experimentation on problems from the literature yielded a 93% optimality frequency, with less than 60 pivots required for 20 period problems, a tremendous efficiency improvement over previous models. As such, the model represents an excellent and practical first step toward efficiently solving multiple product problems on an industrial scale.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/0305-0548(94)00039-B</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Integer programming ; Inventory control, production control. Distribution ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimization ; Production costs ; Production scheduling ; Studies</subject><ispartof>Computers &amp; operations research, 1995-07, Vol.22 (6), p.641-653</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jul 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-8b03a4995835ae93a4c7a0ac2221f0798ad6113146c10cdd98bd060a26d28c8f3</citedby><cites>FETCH-LOGICAL-c360t-8b03a4995835ae93a4c7a0ac2221f0798ad6113146c10cdd98bd060a26d28c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0305-0548(94)00039-B$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3515486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coleman, B.Jay</creatorcontrib><creatorcontrib>McKnew, Mark A.</creatorcontrib><title>A quick and effective method for capacitated lot sizing with startup and reservation costs</title><title>Computers &amp; operations research</title><description>We present a pure zerp-one integer programming model for determining single-item production lot sizes in capacitated “long production run” environments, where each production period is dedicated to a single product, and where production of a given item may extend over more than one production period. All costs, as well as capacity, are time-varying, and include startup (changeover), reservation (opportunity), holding, and production costs. Holding and production cost may also vary within a period. The problem setting is effectively the single-item subproblem of the “multiple product cycling” case. Our a model is efficient primarily because of variable elimination strategies associated with capacity limitations. Although our formulation makes two simplifying assumptions versus previous research, these did not significantly hamper model performance. Experimentation on problems from the literature yielded a 93% optimality frequency, with less than 60 pivots required for 20 period problems, a tremendous efficiency improvement over previous models. As such, the model represents an excellent and practical first step toward efficiently solving multiple product problems on an industrial scale.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Integer programming</subject><subject>Inventory control, production control. Distribution</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Production costs</subject><subject>Production scheduling</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEMQD3pYnWz2I7kItvgFghcF8RLGJGtT66YmaUV_vakVj55mDs_7DvMQss_ghAFrToFDXUBdiSNZHQMAl8VogwyYaHnRNvXjJhn8IdtkJ8ZphqAt2YA8ndP3hdOvFHtDbddZndzS0jebJt7QzgeqcY7aJUzW0JlPNLov17_QD5cmNCYMaTH_CQcbbVhicr6n2scUd8lWh7No937nkDxcXtyPr4vbu6ub8fltoXkDqRDPwLGSsha8RivzrlsE1GVZsg5aKdA0jHFWNZqBNkaKZwMNYNmYUmjR8SE5WPfOg39f2JjU1C9Cn08qlluZFKzJULWGdPAxBtupeXBvGD4VA7WSqFaG1MqQkpX6kahGOXb4241R46wL2GsX_7K8Zjmwaj9bYzb_uXQ2qKid7bU1LmSjynj3_51v1buFTw</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Coleman, B.Jay</creator><creator>McKnew, Mark A.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950701</creationdate><title>A quick and effective method for capacitated lot sizing with startup and reservation costs</title><author>Coleman, B.Jay ; McKnew, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-8b03a4995835ae93a4c7a0ac2221f0798ad6113146c10cdd98bd060a26d28c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Integer programming</topic><topic>Inventory control, production control. Distribution</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Production costs</topic><topic>Production scheduling</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, B.Jay</creatorcontrib><creatorcontrib>McKnew, Mark A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, B.Jay</au><au>McKnew, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quick and effective method for capacitated lot sizing with startup and reservation costs</atitle><jtitle>Computers &amp; operations research</jtitle><date>1995-07-01</date><risdate>1995</risdate><volume>22</volume><issue>6</issue><spage>641</spage><epage>653</epage><pages>641-653</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We present a pure zerp-one integer programming model for determining single-item production lot sizes in capacitated “long production run” environments, where each production period is dedicated to a single product, and where production of a given item may extend over more than one production period. All costs, as well as capacity, are time-varying, and include startup (changeover), reservation (opportunity), holding, and production costs. Holding and production cost may also vary within a period. The problem setting is effectively the single-item subproblem of the “multiple product cycling” case. Our a model is efficient primarily because of variable elimination strategies associated with capacity limitations. Although our formulation makes two simplifying assumptions versus previous research, these did not significantly hamper model performance. Experimentation on problems from the literature yielded a 93% optimality frequency, with less than 60 pivots required for 20 period problems, a tremendous efficiency improvement over previous models. As such, the model represents an excellent and practical first step toward efficiently solving multiple product problems on an industrial scale.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0305-0548(94)00039-B</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 1995-07, Vol.22 (6), p.641-653
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_195819816
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Exact sciences and technology
Integer programming
Inventory control, production control. Distribution
Mathematical models
Operational research and scientific management
Operational research. Management science
Operations research
Optimization
Production costs
Production scheduling
Studies
title A quick and effective method for capacitated lot sizing with startup and reservation costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quick%20and%20effective%20method%20for%20capacitated%20lot%20sizing%20with%20startup%20and%20reservation%20costs&rft.jtitle=Computers%20&%20operations%20research&rft.au=Coleman,%20B.Jay&rft.date=1995-07-01&rft.volume=22&rft.issue=6&rft.spage=641&rft.epage=653&rft.pages=641-653&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/0305-0548(94)00039-B&rft_dat=%3Cproquest_cross%3E8984859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195819816&rft_id=info:pmid/&rft_els_id=030505489400039B&rfr_iscdi=true