Iterated local search for workforce scheduling and routing problems

The integration of scheduling workers to perform tasks with the traditional vehicle routing problem gives rise to the workforce scheduling and routing problems (WSRP). In the WSRP, a number of service technicians with different skills, and tasks at different locations with pre-defined time windows a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heuristics 2017-12, Vol.23 (6), p.471-500
Hauptverfasser: Xie, Fulin, Potts, Chris N., Bektaş, Tolga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integration of scheduling workers to perform tasks with the traditional vehicle routing problem gives rise to the workforce scheduling and routing problems (WSRP). In the WSRP, a number of service technicians with different skills, and tasks at different locations with pre-defined time windows and skill requirements are given. It is required to find an assignment and ordering of technicians to tasks, where each task is performed within its time window by a technician with the required skill, for which the total cost of the routing is minimized. This paper describes an iterated local search (ILS) algorithm for the WSRP. The performance of the proposed algorithm is evaluated on benchmark instances against an off-the-shelf optimizer and an existing adaptive large neighbourhood search algorithm. The proposed ILS algorithm is also applied to solve the skill vehicle routing problem, which can be viewed as a special case of the WSRP. The computational results indicate that the proposed algorithm can produce high-quality solutions in short computation times.
ISSN:1381-1231
1572-9397
DOI:10.1007/s10732-017-9347-8