Separation Functions and Optimality Conditions in Vector Optimization

In this paper, we propose weak separation functions in the image space for general constrained vector optimization problems on strong and weak vector minimum points. Gerstewitz function is applied to construct a special class of nonlinear separation functions as well as the corresponding generalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2017-11, Vol.175 (2), p.527-544
Hauptverfasser: You, Manxue, Li, Shengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose weak separation functions in the image space for general constrained vector optimization problems on strong and weak vector minimum points. Gerstewitz function is applied to construct a special class of nonlinear separation functions as well as the corresponding generalized Lagrangian functions. By virtue of such nonlinear separation functions, we derive Lagrangian-type sufficient optimality conditions in a general context. Especially for nonconvex problems, we establish Lagrangian-type necessary optimality conditions under suitable restriction conditions, and we further deduce Karush–Kuhn–Tucker necessary conditions in terms of Clarke subdifferentials.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-016-1029-4