Invertibility Properties of Singular Integral Operators Associated with the Lamé and Stokes Systems on Infinite Sectors in Two Dimensions

In this paper we establish sharp invertibility results for the elastostatics and hydrostatics single and double layer potential type operators acting on L p ( ∂ Ω ) , 1 < p < ∞ , whenever Ω is an infinite sector in R 2 . This analysis is relevant to the layer potential treatment of a variety o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2017-10, Vol.89 (2), p.151-207
Hauptverfasser: Mitrea, Irina, Ott, Katharine, Tucker, Warwick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish sharp invertibility results for the elastostatics and hydrostatics single and double layer potential type operators acting on L p ( ∂ Ω ) , 1 < p < ∞ , whenever Ω is an infinite sector in R 2 . This analysis is relevant to the layer potential treatment of a variety of boundary value problems for the Lamé system of elastostatics and the Stokes system of hydrostatics in the class of curvilinear polygons in two dimensions, such as the Dirichlet, the Neumann, and the Regularity problems. Mellin transform techniques are used to identify the critical integrability indices for which invertibility of these layer potentials fails. Computer-aided proofs are produced to further study the monotonicity properties of these indices relative to parameters determined by the aperture of the sector Ω and the differential operator in question.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-017-2396-4