A UNIFORM MODEL FOR KIRILLOV–RESHETIKHIN CRYSTALS III: NONSYMMETRICMACDONALD POLYNOMIALS AT t = 0 AND DEMAZURE CHARACTERS
We establish the equality of the specialization E wλ ( x ; q; 0) of the nonsymmetric Macdonald polynomial E wλ ( x ; q; t ) at t = 0 with the graded character gch U w + (λ) of a certain Demazure-type submodule U w + (λ) of a tensor product of “single-column” Kirillov–Reshetikhin modules for an untw...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2017-12, Vol.22 (4), p.1041-1079 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish the equality of the specialization
E
wλ
(
x
;
q;
0) of the nonsymmetric Macdonald polynomial
E
wλ
(
x
;
q; t
) at
t
= 0 with the graded character gch
U
w
+
(λ) of a certain Demazure-type submodule
U
w
+
(λ) of a tensor product of “single-column” Kirillov–Reshetikhin modules for an untwisted affine Lie algebra, where λ is a dominant integral weight and
w
is a (finite) Weyl group element; this generalizes our previous result, that is, the equality between the specialization
P
λ
(
x
;
q;
0) of the symmetric Macdonald polynomial
P
λ
(
x
;
q; t
) at
t
= 0 and the graded character of a tensor product of single-column Kirillov–Reshetikhin modules. We also give two combinatorial formulas for the mentioned specialization of nonsymmetric Macdonald polynomials: one in terms of quantum Lakshmibai–Seshadri paths and the other in terms of the quantum alcove model. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-017-9421-1 |