A UNIFORM MODEL FOR KIRILLOV–RESHETIKHIN CRYSTALS III: NONSYMMETRICMACDONALD POLYNOMIALS AT t = 0 AND DEMAZURE CHARACTERS

We establish the equality of the specialization E wλ ( x ; q; 0) of the nonsymmetric Macdonald polynomial E wλ ( x ; q; t ) at t = 0 with the graded character gch  U w + (λ) of a certain Demazure-type submodule U w + (λ) of a tensor product of “single-column” Kirillov–Reshetikhin modules for an untw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2017-12, Vol.22 (4), p.1041-1079
Hauptverfasser: LENART, C., NAITO, S., SAGAKI, D., SCHILLING, A., SHIMOZONO, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish the equality of the specialization E wλ ( x ; q; 0) of the nonsymmetric Macdonald polynomial E wλ ( x ; q; t ) at t = 0 with the graded character gch  U w + (λ) of a certain Demazure-type submodule U w + (λ) of a tensor product of “single-column” Kirillov–Reshetikhin modules for an untwisted affine Lie algebra, where λ is a dominant integral weight and w is a (finite) Weyl group element; this generalizes our previous result, that is, the equality between the specialization P λ ( x ; q; 0) of the symmetric Macdonald polynomial P λ ( x ; q; t ) at t = 0 and the graded character of a tensor product of single-column Kirillov–Reshetikhin modules. We also give two combinatorial formulas for the mentioned specialization of nonsymmetric Macdonald polynomials: one in terms of quantum Lakshmibai–Seshadri paths and the other in terms of the quantum alcove model.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-017-9421-1